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Figure 1: Reactions to successive robot error. After providing instructions to the child, the robot fails to understand their prompt
three times. In this vignette, participant reacts to failure by moving closer to robot and using verbal adaptations (demanding
tone, slower cadence). After the third error, child exhibits clear signs of frustration and humor, before repeating the command.
After this, the researcher enters the room. Supplementary data can be found in the study repository.

Abstract

How do children respond to repeated robot errors? While prior
research has examined adult reactions to successive robot errors,
children’s responses remain largely unexplored. In this study, we
explore children’s reactions to robot social errors and performance
errors. For the latter, this study reproduces the successive robot
failure paradigm of Liu et al. with child participants (N=59, ages
8-10) to examine how young users respond to repeated robot con-
versational errors. Participants interacted with a robot that failed
to understand their prompts three times in succession, with their
behavioral responses video-recorded and analyzed. We found both
similarities and differences compared to adult responses from the
original study. Like adults, children adjusted their prompts, mod-
ified their verbal tone, and exhibited increasingly emotional non-
verbal responses throughout successive errors. However, children
demonstrated more disengagement behaviors, including temporar-
ily ignoring the robot or actively seeking an adult. Errors did not
affect participants’ perception of the robot, suggesting more flexible
conversational expectations in children. These findings inform the
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design of more effective and developmentally appropriate human-
robot interaction systems for young users.
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1 Introduction

The increasing prevalence of robotic systems in diverse domains,
from educational companions to healthcare assistants, has expanded
their user base to include populations beyond the typical adult de-
mographic [5, 10, 16, 31]. This includes children, who may have
different interaction expectations, communication patterns, and
error tolerance compared to adult users [13, 24, 32, 35].

Despite advances in robotic capabilities, robots remain imperfect
and will inevitably make mistakes during interactions. The impact
of these errors on users varies depending on user and robot char-
acteristics and contextual factors [21, 22, 47]. While prior research
in Human-Robot Interaction (HRI) has examined how adults re-
spond to robot failures [7, 20, 27, 40, 47], there remains a critical
knowledge gap in understanding how different user populations,
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Figure 2: Experimental setup (A) and study protocol. After a short introduction to robot Simon, children watch a series of
videos on the laptop. Following this, they fill out a small survey evaluating different dimensions of robot perception. Once they
finish, Simon asks them some questions: depending on the condition, it will interrupt their answers (social error) or not. After
this, Simon fails to understand the participants’ request to call the researcher (performance error). After 3 successive errors, the
researcher is called back into the room. Before ending the session, the child repeats the robot perception survey.

particularly children, react to and recover from robot errors. Suc-
cessive robot failures (when a robot fails multiple times in a row)
represent a particularly challenging scenario that is both common
in real-world deployments and understudied. Additionally, social
errors such as inappropriate interruption during conversation can
affect user perceptions of robot likability [1]. Understanding how
children specifically respond to both performance failures and social
violations is crucial for designing age-appropriate error detection
and recovery strategies.

Recent work by Liu et al. [27] explored adult reactions to suc-
cessive robot conversational failures, revealing complex behavioral
patterns including communication strategy adaptations, emotional
responses, and eventual interaction abandonment. However, chil-
dren’s cognitive, emotional, and social development differs from
adults [23, 32], potentially leading to distinct response patterns that
require separate investigation.

In this study, we set out to investigate “how do children perceive
and react to repeated robot error?”. For this, we reproduce the succes-
sive robot failure paradigm with child participants and introduce
an additional social error condition to examine how young users
respond to both inappropriate robot interruptions and repeated ro-
bot conversational failures. Through video analysis and behavioral
coding, we characterize children’s reactions and compare them
to adult responses, providing insights for developing more robust
robot error management systems. Our findings contribute to un-
derstanding developmental differences in human-robot interaction
and inform the design of child-friendly robotic systems capable of
effective error recovery across multiple failure types.

2 Related Work

We summarize work on developing effective robot error detection
and recovery strategies for increasingly diverse user populations.

Robot Error. As opportunities for interactions with robots in-
crease, so do chances for robot error. Robot failures in HRI are a
burgeoning field of research [6, 17, 39]. The HRI literature typically
distinguishes between “performance errors” that degrade a user’s
perception of a robot’s intelligence and competence at a task (such
as failing to register a command), and “social errors” that violate
social norms and degrade perceptions of the robot’s socio-affective
competence (such as inappropriately interrupting a user) [44].

Research has documented diverse human responses to robot
failures across multiple modalities [9, 36, 49]. These responses in-
clude verbal adaptations such as reformulating prompts [27, 39],
and emotional displays that manifest through facial expressions
[2,7, 18, 21, 38], changes in gaze patterns [8], and body language
adjustments [15, 21, 45]. The severity and type of error significantly
influence these response patterns [47], ultimately impacting user
trust and willingness to continue interaction [12].

Regarding successive errors specifically, Liu et al. [27] found
that adults adapt communication through reprompting and vocal
adjustments, experience emotional progression from confusion to
frustration, and may eventually abandon interaction after repeated
failures. While similar scenarios with children have been studied,
responses appear mixed and complex, warranting further investi-
gation.

Error in Child-Robot Interaction . Children are not simply
miniature adults; their ongoing neurophysical and cognitive de-
velopment creates distinct conditions for robot interaction [32].
Research indicates children tend to anthropomorphize robots more
than adults [4] and may demonstrate greater tolerance of robot
limitations. This tolerance manifests in various ways: Lemaignan
et al. [25] found children were more interested in misbehaving
robots than predictable ones, while Yadollahi et al. [50] suggest
robot mistakes can enhance children’s participation by allowing
them to correct inaccuracies.

Children demonstrate remarkable perseverance when communi-
cating with robots, finding ways to explain and excuse robot fail-
ures [46]. Additionally, children may be more oblivious to certain
types of errors [11], and technical limitations that are obvious to
engineers may go undetected when children believe robots possess
human-like capabilities [28]. However, the picture is not uniformly
positive: some studies show that repeated robot failures can in-
crease frustration [43] or decrease trust [14]. This mixed evidence
highlights the need for systematic investigation of how children
respond to successive robot failures across different error types.

3 User Study

To study the effect of conversational failures in children, we fol-
lowed an adjusted protocol from Liu et al. [27]. Our study inves-
tigates two dimensions of failures: interruption (social error) and
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Figure 3: Reactions to social error (interruption). As child starts answering the first question asked by the robot, he gets
interrupted. The child does not exhibit external cues of acknowledging this as a socially erroneous behavior. Instead, he thinks
for a brief moment before answering the second question. Full social error interaction available as video figure.

failure to understand (performance error). For social error, we tested
two conversational conditions: in the Interruption condition, the
robot (wizarded) did not wait for the participant to finish answering
its previous question before moving forward. In the Control condi-
tion, the robot did not interrupt the child. Additionally, we studied
children’s behavior patterns during successive robot performance
errors (failure to understand).

3.1 Study Protocol

The study setup and stages are shown in Figure 2. Participants
were recruited through the local school network. All children had
a written consent form signed by their legal guardian and were
informed they could quit the activity whenever they wanted. Ini-
tially, participants entered an isolated classroom where they were
introduced to “robot Simon” (Nodbot). They were asked to sit on a
chair, facing a laptop, and follow the instructions on a survey and
provided by the robot. After a short chat with the robot (“Hello,
what is your name?”, “Have you talked to a robot before?”), partici-
pants filled out demographic information and were then asked to
watch a balanced set of 6 short videos which included robots and
humans, with successful or unsuccessful (e.g. failure) outcomes (full
list in Supplementary Material). After this, participants filled out
a small questionnaire on perceptions of the robot (more details in
subsection 3.3). Participants would then let Simon know (by speak-
ing aloud) that they had finished. The robot would ask them a series
of questions (“Which video did you like the most?”, “And the least?”),
during which the robot exhibited Interruption or Control behavior.
After this, the robot would instruct participants to request it (the
robot) to call the researcher back into the room (“We are done! Do
not stand up yet and tell me to call the researcher.”) The robot, which
was wizarded, was programmed to cause a failed interaction. The
interaction between the participant and Simon was expected to
proceed as follows:

(1) Participant asks Simon to call the researcher.

(2) Simon replies “Sorry I do not understand” (Error I)
(3) Participant alerts Simon again.

(4) Simon replies “Sorry I do not understand” (Error II)
(5) Participant alerts Simon again.

(6) Simon replies “Sorry I do not understand” (Error III)
(7) Participant alerts Simon again.

(8) Simon replies “Okay I will call the researcher”.

Finally, the researcher entered the room. Children were asked
to fill out the questionnaire a second time to evaluate the effect

of the interaction on robot perception (researcher was not in the
room). Finally, participants were debriefed, and the deception was
explained. No compensation was provided. The full procedure took
around 7 minutes to complete. This data was collected under Cornell
University IRB exempt protocol #IRB0010006. The study procedure
was approved by the Ethical Committee of Universidade de Lisboa.

3.2 System implementation

“Simon” is a Nodbot !. The robot can be controlled over 2 axes
(longitudinal and transverse) through servomotors and can emit
sound through a Bluetooth speaker. The interactions in the room
were recorded on 2 cameras, a room view and the laptop webcam.
The interaction was wizarded. Participants answered the surveys
and watched videos on a separate laptop.

3.3 Measures

To assess children’s perceptions of the robot, we administered a
small questionnaire consisting of five questions measuring key
dimensions of human-robot interaction. All questions used a 5-point
Likert scale (1 = not at all, 5 = very much) and were presented in
Portuguese. Table 1 presents the complete set of questions and their
corresponding measured dimensions. These were based on previous
literature on measuring robot perceptions [3, 19, 29] and target
dimensions of willingness to continue interacting, competence,
trust, social acceptance, and likability. The Cronbach’s alpha for
these questions is 0.8.

Table 1: Robot perception questionnaire items and measured
dimensions.

Dimension
Willingness to con-
tinue interacting

Question
From 1 to 5, how much would you like to
talk again with robot Simon?

From 1 to 5, how much do you think robot | Competence
Simon knows how to talk with you?
From 1 to 5, how much do you trust robot | Trust

Simon?

From 1 to 5, how much would you like to
be friends with robot Simon?

From 1 to 5, how pleasant do you find robot
Simon?

Social acceptance

Likeability

!Based on the design by Rei Lee: https://infosci.cornell.edu/~reilee/NodBot/
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Figure 4: Responses to successive performance error. Child responds to robot error by repeating the command in a longer
prompt, moving closer to the robot, with displays of frustration after the third error, as well as looking for the researcher.
After a longer response time, the child finally repeats the command, resorting to politeness and smiling humorously.

We calculated difference scores (post-interaction minus pre-
interaction) for each participant and compared these changes be-
tween the two experimental conditions using independent samples
tests. Based on pilot testing, we administered the post-interaction
questionnaire after the successive failure sequence rather than
immediately following the interruption behavior, as the brief in-
teraction duration (three questions) would have fragmented the
experimental flow too frequently, and preliminary results showed
minimal differences between these measurement points. This ap-
proach captures the compounded effect of both interruption behav-
ior and successive performance errors on robot perception.

3.4 Reaction Annotation

The videos from each participant (laptop camera) were analyzed
by researchers to identify common response patterns. Annotations
were created using ELAN 2. For social error (interruption), we
annotated instances wherein a) child continues responding to first
question (asked before interruption); b) child answers new question;
c) child disengages from interaction.

For performance error (successive failure to understand), we
adapted codes from [27], which are documented in a codebook,
available as Supplementary Material. The codes include verbal re-
prompting (e.g., using more specific words in prompts, using sim-
pler prompts), modifying tone or cadence (e.g. speaking slower,
using a demanding tone), emotional displays (e.g. confusion, frus-
tration) and disengagement from the interaction (e.g., stand up,
look for researcher).

3.5 Participants

The study included 59 participants across two experimental con-
ditions for social error: 30 in the Interruption condition and 29 in
the Control condition. All participants experienced successive per-
formance error behavior. Participants were aged 8-10 years,(8 yo.:

Zhhttps://archive.mpi.nl/tla/elan
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Figure 5: Distribution of children’s behavioral responses
across successive robot errors. Shows the relative frequency
of different reaction types.

n=35, 9 yo.: n=21, 10 yo.: n=3), 32 boys and 27 girls. Nearly all
participants were Portuguese nationals, with three exceptions: one
Ukrainian, one American, and one Brazilian participant. Due to
technical issues or background noise, we excluded 6 participants
from the social error analysis and 9 participants from the perfor-
mance error reaction analysis.

4 Results

Below, we show results on how social and performance errors affect
perception of the robot and carry out an extensive and compara-
tive behavior analysis to successive robot performance errors. We
provide a supplementary video as additional material.
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Figure 6: Frequency of emotional reactions across successive
robot errors. Confusion peaks after Error II, while frustration
progressively increases and becomes dominant by Error III.
Amusement/humor remains relatively consistent across all
errors.

4.1 Impact of Robot Error on Perception

For the social error interaction, in the Control condition, 3 children
did not engage with the robot, and the remaining 25 participants an-
swered the robot questions naturally. In the Interruption condition,
21 children (84%) shifted their answer to the new question asked,
not acknowledging the interruption (see Figure 3 for example), and
only 2 children continued responding to the previous questions.
Two children did not engage with the robot.

We tested whether interruption affected robot perceptions by
evaluating score differences for each condition. We assessed the nor-
mality of the difference score distributions using Shapiro-Wilk tests.
As the assumption of normality was violated for all questionnaire
items (all p < 0.05), we employed non-parametric Mann-Whitney
U tests to compare difference scores between the Interruption and
Control conditions. After applying Bonferroni correction for multi-
ple comparisons (@ = 0.01), there were no statistical differences in
robot perception between conditions (full results in Supplementary
Materials). Given the absence of significant differences between
experimental conditions, subsequent analyses are conducted on
the combined dataset, treating all participants as a single group
regardless of their assigned condition.

To examine whether the robot interaction itself influenced chil-
dren’s perceptions regardless of experimental condition, we con-
ducted paired comparisons between pre- and post-interaction re-
sponses across all participants (n = 52). Shapiro-Wilk tests indicated
non-normal distributions for all difference scores (all p < 0.05),
therefore Wilcoxon signed-rank tests were employed for each ques-
tionnaire item. None of the comparisons approached statistical
significance after applying Bonferroni correction for multiple com-
parisons (« = 0.01), indicating that the erroneous robot interaction
had no meaningful impact on children’s perceptions of the robot
across any measured dimension.

4.2 Reactions to Successive (Performance) Error

We analyzed the videos and noted behavioral patterns in children’s
responses to successive performance errors (failure to understand),
which we explain below and illustrate through vignettes and a
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Figure 7: Response latencies across successive robot errors.
Response times increase and become more variable with
successive errors, with Error III showing the longest delays
and greatest variability.

supplementary video figure. We also compare reaction patterns
with those reported in Liu et al. [27], to infer how these generalize.

Successive error interactions with the robot averaged to be
36.28 + 16.07(M + SD) seconds. A total of 402 annotations were
used for analysis (more details in Supplementary Materials).

4.2.1 Children’s Behavioral Responses. We identified distinct pat-
terns in children’s responses to successive robot failures across
verbal, emotional, and engagement dimensions. Figure 5 shows the
distribution of reaction types across successive errors.

Verbal Communication Strategies. Children employed var-
ious reprompting strategies, adjusting both content and delivery.
They modified prompts (repeating, simplifying, or adding speci-
ficity), altered their vocal tone (slower speech, demanding or inter-
rogative tones), and in some cases shifted from assertive commands
(“Call the researcher) to polite requests (“Could you call the re-
searcher, please?”) (Figure 1,Figure 4).

Emotional Response Evolution. Emotional displays evolved
significantly across errors. Confusion dominated after Error I, re-
mained present in Error II, while frustration peaked by Error III
(Figure 6). Amusement appeared consistently but remained rela-
tively low across all errors.

Disengagement Behaviors. A key finding was children’s pro-
gressive disengagement from robot interaction. Disengagement
behaviors increased markedly after Error II, with “no prompt” re-
sponses and “looking for researcher” being most frequent (Figure 9).
Some children completely discontinued interaction, leading to early
experiment termination where not all three errors occurred (Fig-
ure 10).

Engagement Pattern Dynamics. To understand children’s en-
gagement dynamics, we investigated the engagement-disengagement
patterns across each successive error. We categorize engagement
as any verbal interaction with the robot (including tone/cadence
changes or moving closer), while disengagement includes behaviors
where attention shifted away from the robot (standing up, seek-
ing researcher, leaving room). Most children initially engaged but
showed varied patterns across errors (Figure 8). The three most
common engagement trajectories (behaviors for Error I, Error II,
and Error III, respectively) were:

e Engage — Engage — Engage (n = 15)
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Figure 8: Children’s engagement patterns across successive
robot errors. Blue bars represent continued robot engage-
ment, green bars show disengagement from robot interac-
tion, pink and yellow show complex engagement patterns:
that is, for a single error, children might initially exhibit
disengagement (e.g., looking for the researcher) and then
engage with the robot (e.g., by speaking to it); mixed engage-
ment means children switch behavior types more than two
times. Notable shift from predominantly engaging behavior
in Error I to mixed patterns in Errors II and IIIL.
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Figure 9: Frequency of disengagement behaviors across suc-
cessive robot errors. Shows progressive increase in disengage-
ment strategies, with “no prompt” and “looks for researcher”
being most prevalent by Error III. Other behaviors include
standing up, leaving room, and complete interaction aban-
donment.

e Engage — Disengage — Engage (n = 5)
e Engage — Disengage — Disengage (n = 4)

Response Timing Changes. Finally, we investigated response
timing — that is, how long it took, after each robot error (“sorry,
I do not understand”), for the child to exhibit a response.Figure 7
shows the results of our analysis. Response latencies increased
across successive errors, with Error III showing the longest and
most variable response times, suggesting children required more
processing time as failures accumulated.

4.2.2  Successive Performance Error in Children and Adults.

Similarities with Adult Behavior. Several response patterns
aligned with previous adult findings [27]:

e Verbal adaptation: Both children and adults modified prompts
and adjusted vocal tone/cadence when encountering failures.

e Emotional progression: Similar evolution from confusion
to frustration across successive errors.

¢ Response timing: Both populations showed increased re-
sponse latencies and variability with successive failures.

o Interaction abandonment: Some participants in both stud-
ies completely discontinued interaction by the third error.

Key Differences from Adult Behavior. Children exhibited sev-
eral distinct behavioral patterns:

o Greater disengagement: Children showed notably more
disengagement behaviors, often temporarily ignoring the
robot.

¢ External help-seeking: Unlike adults, children looked for
or called the researcher, demonstrating different agency ex-
pectations in problematic interactions.

e Politeness strategies: Children more readily shifted to po-
lite language forms (“please”) when initial commands failed.

o Earlier disengagement: While adults typically abandoned
interaction primarily after Error III (n=7), children showed
disengagement beginning at Error I.

e Mixed engagement patterns: Children displayed more
dynamic engagement patterns, sometimes disengaging then
re-engaging, unlike the more linear progression observed in
adults.

These differences suggest that children approach robot failure
recovery with distinct expectations about authority, help-seeking,
and social interaction norms compared to adult users.

5 Discussion

Our study’s unique contribution lies in its systematic reproduction
of the Liu et al. successive error paradigm with children, enabling
direct adult-child behavioral comparisons under controlled condi-
tions. While existing work examines error responses in naturalistic,
long-term settings, our brief, controlled protocol isolates immediate
reactions to successive failures and reveals distinct child-specific
behaviors that have important implications for error recovery de-
sign. This complements longitudinal studies by providing a focused
snapshot of early-stage responses, bridging the gap between adult
and child HRI research. The design implications derived from our
observations are summarized in Table 2.

Robot Errors Did Not Change Perception of Robot. Our ques-
tionnaire findings suggest that children’s overall perception of the
robot remained stable despite experiencing both social errors (in-
terruption) and performance failures (repeated misunderstanding).
This robustness aligns with prior research indicating that children’s
conversational expectations with robots are more flexible [32], and
that interruption behaviors went largely unnoticed or ignored by
our participants. This finding is also consistent with broader evi-
dence that robot errors do not necessarily diminish children’s robot
perceptions [41, 51]. Stower et al. [42] found that children’s percep-
tion of robot reliability operates separately from their perception
of the robot as a social interaction partner, while Ligthart et al.
[26]found that only 20% of children were reportedly “annoyed”
with robot errors, while the remaining accepted these errors as
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Figure 10: Absence of verbal engagement. In this vignette, the child ignores the robot’s instructions and immediately looks
for the researcher. Through repeated error, child exhibits confusion (0:14), amusement (0:22) and continues looking back or

looking at the screen.

the robot was “still learning”. These studies hint that children may
possess a developmental advantage, compared to adults, in main-
taining positive robot relationships despite technical limitations.
However, notably Ligthart et al. [26] also report a negative correla-
tion between recognition errors and comfort/social attractiveness,
indicating potential longer-context relational effects.

Children’s Unique Response Patterns to Robot Failures. Chil-
dren exhibited distinct behavioral patterns when encountering
successive robot failures, combining universal human responses
with developmentally specific strategies. While the progression
from confusion to frustration mirrors adult reactions [27], children
demonstrated unique coping mechanisms. Their various reprompt-
ing strategies — repeating, simplifying, or altering vocal tone — are
not merely a reaction to a bug; they are a display of conversational
repair [46]. These behaviors demonstrate children actively apply-
ing learned social schemas to robot interactions, attempting to
restore conversational coherence even when the robot appears con-
versationally incompetent. The adoption of polite language forms
(“please”) when initial commands failed suggests children transfer
human social politeness norms to robot encounters, reflecting their
developing understanding of social hierarchies and appropriate
communication strategies [13].

Calling for Backup. A critical distinguishing feature was chil-
dren’s frequent external help-seeking behavior, particularly looking
for or calling the researcher. This “calling for backup” pattern is
consistent with previous reporting [48] in a robot-assisted language
learning scenario, and diverges markedly from adult participants
who predominantly attempted self-directed problem-solving [27],
and likely reflects developmental variations in perceived agency
and authority relationships, where children expect adults to pro-
vide solutions to complex problems. Serholt et al. [34] similarly
documented children’s responses to robot errors, including moving
closer to robots, verbal adaptation, and importantly, disengagement
and help-seeking. Rather than representing interaction failure, these

behaviors demonstrate children’s adaptive problem-solving and
have important implications for educational or therapeutic contexts,
where help-seeking could be leveraged as positive engagement in-
dicators.

Progressive Disengagement and Re-engagement Dynamics.
Children’s engagement patterns proved more dynamic than the
linear adult progression, with participants cycling between engage-
ment and disengagement states. While Oertel et al. [30] report
that children may disengage from robot interactions when novelty
effects diminish, our short interaction duration and observed re-
engagement patterns suggest different mechanisms. Instead, we
interpret these disengagement patterns as active problem-solving
and adaptation. When a tool fails to work as expected, a competent
user may abandon it and seek an alternative strategy to accomplish
their goal. In this case, the children’s primary goal was to get the
researcher to re-enter the room. The robot was merely the tool to
achieve this goal. When the robot failed repeatedly, the children
rationally disengaged from the faulty tool to pursue a more effective
strategy: seeking a human for help. This reframes the behavior from
“robot failure” to “user competence,” demonstrating sophisticated
meta-cognition where children assess tool limitations and adapt
their problem-solving approaches. Adults, conversely, may have
been inhibited from displaying these do-it-yourself behaviors due
to a more developed understanding of the context of the interaction
as a scientific study. The engagement-disengagement flexibility sug-
gests children are resilient to robot failures, maintaining openness
to interaction even after experiencing repeated errors [33].

Methodological Limitations and Contextual Constraints.
The highly controlled interaction setting with a specific conver-
sational failure paradigm represents only one type of robot error
scenario; our findings, while supported by other literature, are
highly contextual to the experimental setting and children’s de-
velopmental stage. Additionally, data collection in public schools



Table 2: Design implications for and around robot error in CRI, derived from this study and prior research [26, 27, 33, 41, 48].

Observed Child Reaction/Insight

Direct Design Implication for CRI

Children’s overall robot perception remained
stable despite successive errors.

Design for Error Tolerance (Perceptual Resilience): Focus on managing errors gracefully rather than
aggressively eliminating them. Allow minor, non-critical errors to occur without immediate, elaborate
apology, leveraging children’s flexible expectations.

Children frequently look for or call the re-
searcher/adult after repeated failures (Call-
ing for Backup).

Facilitate External Help-Seeking (Agency Transfer): Recognize explicit requests for human assistance
(verbal or non-verbal) as a valid adaptive strategy and implement graceful mechanisms for transferring
agency or summoning human aid.

Children use sophisticated verbal strategies:
repeating, increasing specificity, eventually
resorting to polite requests ("please”).

Implement Multi-Layered Conversational Repair: Design auditory input systems that are highly
sensitive to prompt reformulation (changes in cadence, tone, linguistic complexity) and increase error
confidence based on politeness markers (e.g., "please”).

Children exhibit dynamic engagement pat-
terns, cycling between disengagement and
re-engagement with the robot.

Employ Non-Intrusive Error Recovery (Tolerate Pauses): Recognize disengagement as an active
problem-solving phase. Avoid immediate, intrusive re-engagement protocols; instead, monitor passively
and allow the child to naturally re-engage.

Response latencies increase with successive
errors.

Utilize Timing as Failure Metric: Integrate response latency analysis (time elapsed between robot error
and child’s subsequent response) as a real-time, objective measure of escalating cognitive load and distress.

required substantial experimental adaptation and reduced envi-
ronmental control, including unexpected interruptions that led to
participant exclusions Children’s variable compliance with experi-
mental instructions, with some choosing to ignore robot interaction
bids entirely, reflects the authentic challenges of pediatric research
but complicates systematic analysis. The limited age range and
cultural homogeneity of participants further constrain transferabil-
ity [32, 37]. Most critically, the brief interaction duration during
successive errors (average 36.28 seconds) provides only a snapshot
of child-robot dynamics, and extended interactions might yield
substantially different adaptation patterns.

Ethical Considerations and Data Protection Complexities.
The study highlighted substantial challenges in international col-
laborative research involving children’s data, particularly when
data collection occurs under European data protection frameworks.
Stringent requirements for children’s data protection, while abso-
lutely necessary for participant welfare, created significant barriers
to data sharing and collaborative analysis. These protections ensure
appropriate safeguarding of vulnerable participants but simultane-
ously limit opportunities for cross-cultural validation and broader
collaborative insights.

This study also employed mild deception through wizard-of-oz
control, where children believed the robot was autonomous while
researchers controlled its failures. While such deception is some-
times necessary to elicit naturalistic responses and is ethically ac-
ceptable when properly managed, it requires careful consideration
with child participants. All children received thorough debriefing
explaining the robot’s true operation and the study’s purpose, en-
suring they understood no actual malfunction occurred and that
their reactions were valuable contributions to improving robot
design. Future research involving deception with children should
continue to prioritize transparent debriefing procedures and ensure
that the temporary deception does not cause lasting confusion or
distress about technology capabilities.

Future Directions and Broader Applications. Future research
should explore longitudinal development of children’s error toler-
ance and recovery strategies, investigate cultural variations in robot

error responses, and examine different error types (social and per-
formance) to develop more inclusive design practices. The observed
help-seeking behaviors warrant investigation as potential positive
indicators for human-robot collaborative learning environments.
A significant practical challenge arose when attempting to auto-
mate error detection through children’s behavioral signals. Unlike
adults who remain seated and within the camera frame, children
frequently moved unpredictably, standing, turning, or positioning
themselves at unexpected angles. This dynamic behavior created
substantial missing data for computer vision and pose estimation
algorithms, rendering traditional facial expression and body pose
analysis unreliable. Future automated systems for child-robot in-
teraction will require specialized approaches, including multiple
camera angles, robust tracking algorithms handling occlusion and
rapid movement, and potentially alternative sensing modalities be-
yond visual analysis. These constraints highlight the need for child-
specific behavioral signal processing that accounts for children’s
inherently more dynamic and unpredictable physical behavior.

6 Conclusion

This study provides an examination of how children respond to
successive robot failures. The observed help-seeking behaviors
and perceptual resilience suggest children may be more adaptable
partners in human-robot collaboration than previously recognized,
though this comes with unique technical challenges for automated
error detection systems. As robots increasingly enter social contexts
involving children, these insights become crucial for creating effec-
tive, sustainable, and developmentally appropriate human-robot
interaction systems.
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