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ABSTRACT
How do humans recognize and rectify social missteps? We achieve
social competence by looking around at our peers, decoding subtle
cues from bystanders — a raised eyebrow, a laugh — to evaluate the
environment and our actions. Robots, however, struggle to perceive
and make use of these nuanced reactions. By employing a novel
neck-mounted device that records facial expressions from the chin
region, we explore the potential of previously untapped data to
capture and interpret human responses to robot error. First, we
develop NeckNet-18, a 3D facial reconstruction model to map the
reactions captured through the chin camera onto facial points and
head motion. We then use these facial responses to develop a robot
error detection model which outperforms standard methodologies
such as using OpenFace or video data, generalizing well especially
for within-participant data. Through this work, we argue for ex-
panding human-in-the-loop robot sensing, fostering more seamless
integration of robots into diverse human environments, pushing
the boundaries of social cue detection and opening new avenues
for adaptable robotics.
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1 INTRODUCTION
Humans navigate social environments by perceiving and interpret-
ing cues from those around them. Social competence stems partly
from this ability to read non-verbal signals such as facial expres-
sions, body language, and subtle gestures. These environmental and
peer-based inputs form a feedback loop that informs social behavior
and facilitates integration into diverse social contexts [18].

The concept of human-in-the-loop sensing in robotics leverages
this innate human capability to enhance the social competence and

Figure 1: User study scheme. Participants wearing NeckFace
[8] watch videos where a scenario of human or robot error
is shown, eliciting a reaction. The IR camera image is con-
verted into 3D facial points and head rotation data through
a customized NeckNet model. This data is then used to train
error detection models which map human reactions to the
scenario displayed.

efficiency of robotic systems. This approach posits that human reac-
tions can serve as a rich, real-time source of information for robots,
guiding their behavior and functionality. For example, methods
for Reinforcement Learning from Human Feedback (RLHF) have
leveraged human social cues and emotions as feedback input [24].
Recent works [31, 36, 39] have started exploring the potential of
human reactions in the context of human-robot interaction (HRI)
for robot error detection. These studies make use of human so-
cial cues, captured through various means, as indicators of robot
performance and social appropriateness.



Traditional implementations of this concept often rely on station-
ary cameras or extensive sensor arrays to capture human reactions.
While groundbreaking, these methods can be resource-intensive,
computationally demanding, and may struggle to adapt to dynamic,
real-world environments where both humans and robots are in
constant motion. To address these limitations, we employ NeckFace
[8], a novel, neck-mounted device that records facial expressions
from the chin region and maps them onto 3D facial points and head
rotation. This lightweight, bi-camera system offers an alternative
perspective on human reactions, potentially capturing nuanced
expressions that may be overlooked by traditional methods. Its
wearable nature allows for data collection in dynamic, real-world
scenarios, providing a more efficient and adaptable solution for
understanding human responses to robot behavior.

To test and benchmark the efficiency of NeckFace against other
conventional approaches, we conducted a comparative user study.
Participants’ reactions to video stimuli displaying human and robot
error were recorded simultaneously using NeckFace and conven-
tional RGB cameras. Following this stage, we 1) developed and
tested a model to map NeckFace’s IR camera data onto 3D facial
expressions and head motion data, NeckNet-18; 2) used this reac-
tion data to develop error detection models that perform well for
unseen participants but also generalize to a single participant with
minimal data for training; and 3) compared these models with con-
ventionally used methods, such as OpenFace features [3, 36, 39] or
RGB camera data [4, 30], finding that it outperforms these methods.

This research not only contributes to the development of more
dynamic and context-aware robotic systems but also advances our
understanding of how human social competence can be effectively
leveraged in HRI. By exploring alternative data sources and expand-
ing on human-in-the-loop sensing methodologies, we aim to pave
the way for more socially competent and efficient robotic systems
that can seamlessly integrate into human environments.

2 RELATEDWORK
Social cues for error detection: Human-in-the-loop robotic sys-
tems [35] leverage human input to enhance robots’ efficiency, yield-
ing positive outcomes in HRI [11]. Following this concept, har-
nessing human social cues can equip robots with better social and
operational competence. For example, a substantial body of liter-
ature has begun exploring social cues in response to robot error,
revealing that human reactions are multimodal and diverse [7, 31],
including body and head motion [12, 20, 40], gaze [6], and facial
expressions [1, 16, 20, 38]. The detection of robot error from social
cues has been investigated through various machine learning ap-
proaches. Stiber et al. [39] proposed a framework for “error aware"
HRI, employing a deep neural network, building on previous work
[37]. Other studies [31, 36] utilize recurrent neural networks (RNNs)
to preserve time-dependencies. Random Forest classifiers have also
demonstrated efficiency as linear methods for error detection [26].
Recently, combinations of Minirocket [10] classifiers have achieved
high performance in error and confusion detection [41, 42]. To
bypass the need for feature extraction, some researchers have em-
ployed convolutional neural networks [4, 30] to classify human
reactions directly from video data. Recent work by Ravishankar

et al. [33] explores unsupervised learning of robot error by detect-
ing abnormalities in human-robot interactions from human-human
interaction data. These works explore visual, audio and semantic
data modalities. Given the novelty of the field, however, there re-
mains untapped potential for exploring novel data modalities and
processing methodologies for social cue classification.
Beyond standard methods for data collection: Capturing facial
expressions as humans watch robots can allow the robot to infer hu-
man perceptions of robot performance and social appropriateness.
High-accuracy facial expression tracking traditionally involves ac-
tive motion capture instrumentation on the face, either using visual
markers [34] or other sensors such as electromyography (EMG)
[13] or capacitive sensors [32]. These methods usually require ex-
tensive setups and calibration and can cause physical and social
discomfort. Relieving users from heavy on-face instrumentation,
frontal-camera-based vision solutions have been getting recent at-
tention [2, 27]. These solutions usually involve placing a camera in
front of the user’s face to directly record and analyze their facial
expressions. While they provide a less intrusive experience, they
are not mobile, as users have to appear in front of the camera within
reasonable angle and distance. To address these challenges, recent
wearable solutions look more into less intrusive sensing solutions
while trying to maintain tracking performance [8, 22, 23, 43].
Among these, NeckFace [8] is a wearable facial expression tracking
system that can estimate 3-dimensional facial expressions continu-
ously. It performs comparably to traditional video-based systems,
without the need for a frontal camera. Unlike other mounted de-
vices, NeckFace is robust to users’ head rotations, allowing for
greater flexibility in use. It features a 3D-printed neckband with
two infrared (IR) cameras positioned on either ends pointing up-
wards toward the wearer’s neck, chin and cheeks (Figure 1). Two
850 nm IR LEDs are placed beside each camera to provide indepen-
dent lighting to minimize the impact of unstable environmental
lighting. NeckFace uses a convolutional neural network (ResNet-34
[15]) to convert the captured images into 3D facial expressions
represented by 52 Blendshapes. NeckFace has been demonstrated
to have reliable tracking performance across different scenarios
such as sitting, walking and remounting. In light of this, we chose
NeckFace as our facial reaction reconstruction device.
To the best of our knowledge, this is the first user study pursuing the
use of a neck-mounted device to capture human social cues in HRI,
investigating and benchmarking its potential for error detection.

3 STUDY DESIGN
In this section, we detail the NeckFace system implementation, user
study design and methodology for data collection. To collect human
reactions to observed errors, we followed a procedure adapted from
Bremers et al. [4] for in-lab data collection, where participants
observed a set of videoswhere error occurs. The elicitationmaterials
and code used are shared in the project repository 1.

3.1 Study Protocol
The study set up is shown in Figure 2. Participants were recruited
through flyers and word-of-mouth. After giving informed consent

1http://irl.tech.cornell.edu/badrobots-feat-neckface/
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Figure 2: Study setup. In the Calibration round, the partici-
pant, wearing NeckFace [8], copies the movements seen on
a video on an Iphone 11. The Stimulus round consists of a
series of 30 videos played on a screen, while a webcam and
NeckFace record facial reactions.

and providing demographic information, participants were taken
to the experiment room, where the researcher mounted NeckFace
on them, adjusting the positioning of the cameras as necessary.
Following this, participants completed a calibration round, where
they were placed in front of an iPhone device and asked to copy
the movements seen on a video, such as moving their head up and
down or raising their eyebrows (approximately 5 minutes), comply-
ing with the initial NeckFace work [8]. After this, the researcher
would leave the room and data collection would begin, as partici-
pants completed a stimulus round where they watch a series of 30
videos presented in random order on a screen. Participants watched
each stimulus video while a high-resolution webcam and NeckFace
recorded their facial responses. Participants were not able to see
their own image while the stimulus videos played. Compensation
was provided at rate of USD 15/hour. After this, participants were
taken back to a smaller room to fill out a final written questionnaire.
The full procedure took around 30 minutes to complete. A diagram
of study stages and data collected can be seen on Figure 3. This
data was collected under Cornell University IRB exempt protocol
#1609006604.

3.2 System implementation
In this work, both IR cameras from NeckFace are connected to
a single Raspberry Pi 4B via an Arducam multi-camera adapter,
different from the original NeckFace system which uses two Rasp-
berry Pis to record the images. This allows for a lighter system that
is easier to wear and integrate with other components. The two
cameras capture images of the wearer’s neck, chin and cheeks from
both sides, which are subsequently used to estimate the full facial
expressions in 3D.

The NeckFace system needs to be trained in order to provide
accurate facial expression estimations. To supervise the training
process, a dataset of (IR cameras image, 3D facial expression) pairs
needs to be collected. Specifically, the 3D facial expressions (ground
truth) were represented by 52 Blendshapes [34] captured with the

TrueDepth camera on an iPhone 11 Pro. We also predicted three
head rotation variables. We obtained the training data through
the calibration round, where participants were asked to follow
movements and facial expressions seen on a video (Figure 2).

In addition to the NeckFace device and calibration setup, a
participant-facing RGB camera was used to record participants’
reactions.

3.3 Stimulus Dataset
We selected a set of 30 stimulus videos for collecting human reac-
tions. Following the methodology in Bremers et al. [5], we define
errors as “actions not as intended”. For example, a robot falling
while playing soccer, or a person crashing a lawnmower onto an
object. We included videos of human failures (10), robot failures
(10) and control videos (10) (see Figure 2 for example). The videos’
average length is 13.69± 7.77 s. The full list can be consulted in the
project repository 1.

3.4 Participants
A total of 30 participants completed the study. Due to technical
issues or poor quality of data, 5 participants were excluded (P17
and P27 were removed because they were wearing large earrings
which would shake and cause disturbances in the image quality;
P27, 29 and 30 for inadequate NeckFace camera adjustment, and P13
due to erratic head motion during calibration). The remainder 25
participants took on average 33m22s±4m19s to complete the survey.
Ages range from 21-78 (37.73 ± 17.37). 17 participants identify as
female, 12 as male, and 1 as non-binary. The study included partici-
pants from 11 nationalities. Racial/ethnical distribution includes 17
Caucasian/White or Asian/White, 6 Asian/Asian American partici-
pants, 4 Hispanic/Latino and 1 African/African American/Black, 2
participants who self-described to be Indian and Indian American.

4 MODEL DEVELOPMENT
Below, we describe model development for NeckFace 3D facial
reconstruction and for error detection models.

4.1 3D Facial Mapping Model
The 3D facial mapping model takes IR video frames captured by the
NeckFace device and converts them into numerical representations
of 3D facial expressions. The model was developed following the
original design of NeckNet [8].

Problem Formulation and State space:Tracking facial expres-
sions with the wearable neckband was formulated as a regression
problem: at any given time, the raw data from the wearable device
is captured as two images 𝑖𝑙 , 𝑖𝑟 ∈ R640×480, from the left and right
side camera, respectively. The model output is a feature vector
𝑒 ∈ R55×1, representing the 3D facial expression and head orienta-
tion.
Action Space : The model output 𝑒 ∈ R55×1 represents the 3D
facial expression. This includes 52 Blendshape parameters extracted
from TrueDepth camera by ARKit, representing the frontal face,
and 3 angles representing the orientation (yaw, pitch, roll) of the
head. The 52 Blendshapes each represent a specific facial movement
(e.g., jawOpen, mouthClose, etc.), with numerical values linearly
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Figure 3: Study protocol and data collected. In the calibration
round, NeckFace IR camera data is collected along with the
Truedepth data from the Iphone (and head rotation angles).
The latter serves as ground truth to train NeckNet-18. In
the stimulus round, reactions to neutral (0) and error (1)
videos are collected through NeckFace cameras. This dataset,
NeckFaceIR, is later input to NeckNet-18, transforming the
dataset into 3D facial reactions (NeckData).

describing the extent of that movement from a scale of 0 to 1000.
The ground truth of these Blendshapes was captured with the
TrueDepth Camera of an iPhone 11 at 30 fps and later resampled
to 12 fps to match the sampling rate of the IR cameras. A full list of
the 55 features is provided as supplementary material.
Dataset : Two datasets were used to train and evaluate the facial
reconstruction model. In addition to the data collected in this study,
we used the original NeckFace dataset [8] for training.
•NeckFaceOriginal: video frames collected for Chen et al. [8]. It
includes images recorded from two IR cameras at 30 fps from 13
participants. This dataset was used to pre-train the model.

•NeckFaceIRCalib: video frames from NeckFace’s IR cameras
collected during the calibration round. Frames were recorded at
12 fps. This dataset was used to fine-tune the pre-trained model.
See Figure 3 for schematic of how this data was used.

Data processing and augmentation were applied both during pre-
training and fine-tuning. Specifically, raw images from the two
cameras were first converted to grayscale and resampled to a size
of 320 by 240 pixels, then tilted horizontally to generate an image
of size 640x240 pixels. Data augmentation methods include: 1) 50%
chance of random scaling with a factor of 0.9 to 1.1, 2) 50% chance
of random rotation of -30 to +30 degrees (while pre-training) or -8
to +8 degrees (while fine-tuning), 3) 50% chance of random trans-
lation of -6 to +6 pixels in both directions. These operations were
applied to both sides of the images independently but with the same
parameters.
Evaluation Metrics : The model was evaluated with the Mean
Absolute Error (MAE) between the predicted Blendshapes and
ground truth (TrueDepth). The error of the facial expressions and

head orientation were calculated separately. Specifically, MAE𝑓 =∑52
𝑖=1

1
52 |𝑒𝑖 − 𝑒𝑖 |, MAE𝑜 = 1

3
∑55
𝑖=53 |𝑒𝑖 − 𝑒𝑖 | where MAE𝑓 is the er-

ror of facial expressions tracking and MAE𝑜 is the error of head
orientation tracking. 𝑒 is the ground truth of facial expression and
head orientation and 𝑒 is the model prediction.
Model Design : We designed NeckNet-18, a convolutional neural
network (CNN) with a ResNet-18 backbone and a fully-connected
decoder (Figure 4). We based this structure on the previous work
[8], with adaptations to better fit our data and task. First, we used
a lighter-weight ResNet-18 instead of the ResNet-34 model used in
prior work [8], based on two considerations: 1) the dataset collected
in this user study is smaller than that in Chen et al. [8] due to smaller
calibration time and a lower frame rate. Larger models would be
more prone to overfitting. 2) ResNet-18 has roughly half the number
of trainable parameters when compared with ResNet-34, which
results in faster training and inference speed. Previous work on
similar tasks also demonstrated that ResNet-18 has comparable
performance to ResNet-34 with a smaller dataset [23].
Model Training : NeckNet-18 is designed for within-participant
generalization, using a small Calibration round to fine-tune the
model for new participants. Thus, the model’s generalizability re-
lates to unseen temporal data rather than unseen participants.
We pre-trained the model on the NeckFaceOriginal dataset. To fine-
tune and evaluate model performance of the 3D facial mapping
model, we used data collected from the calibration round, Neck-
FaceIRCalib. Specifically, we first divided this dataset into 5 folds,
by dividing data collected from each participant’s calibration round
into 5 parts in temporal order, and combining each of the 5 parts
from different participants together. This means that each fold
contains data from all participants, but this data does not overlap
temporally. We then chose 4 of the 5 folds to use as training data to
fine-tune the model, and the other fold as testing data. This process
was repeated 5 times, constituting a 5-fold cross-validation where
all 5 folds had appeared in the testing data once. This step also
allowed us to understand the within-participant generalizability of
the model. Finally, all 5 folds were combined and the model was
trained again to maximize the benefit of all available training data.
During pre-training, the model was trained for 30 epochs with an
initial learning rate of 0.0002. Given the differences in camera angle
and image quality between the original NeckFace implementation
and our re-implementation, the fine-tuning stepwhich followedwas
givenmoreweight to allow themodel to better learn the distribution
of the new dataset. As a result, during fine-tuning, the model was
also tuned for 30 epochs but with an initial learning of 0.0001.
After training, the model was used to reconstruct the NeckFace
IR data collected during the stimulus round (participant reacted to
video scenarios), which generated the dataset of 3D facial reactions
used as input for the error detection model (Figure 3).

4.2 Error Detection Model
We used the output of NeckNet-18 (55 Blendshape and head motion
parameters) while participants were watching stimulus videos and
trained models that detect when humans are reacting to failure. We
benchmarked this performance against other conventional data in-
puts, and tested the models’ ability to generalize to new participants
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or within the same participant data. Figure 3 illustrates how study
stages and datasets integrated into our processing methodology.

Problem Formulation: Detecting failure based on human reac-
tions was formulated as a sequential decision-making problem: at
each time step 𝑡 , the environment is captured as a state variable
𝑠𝑡 ∈ 𝑆 and the model output is an outcome label 𝑓𝑡 ∈ 𝐹 , where 𝐹
is a discrete variable that describes the stimulus: 0 if neutral, 1 if
failure.
Action Space: The reactions captured with NeckFace IR cameras
and RGB video were labeled according to the type of stimulus
video shown to participants. In videos where error occurs, only the
moments following the exact failure moment were used as input
data (and labeled 1, reaction to failure). Control videos, where there
is no error, were used integrally, and labeled 0, neutral state. This
reduced data imbalance across classes.
Datasets: We tested 4 data input sources, to test the performance
of NeckFace against other commonly used methods.
•NeckData: this dataset was collected at 12 fps, consisting of 55
Blendshape and head motion parameters as described in Section
4.1, reconstructed using NeckNet-18.

•OpenData: Reactions to the stimulus videos were also recorded
using a RGB camera at 30 fps. We ran OpenFace [3] on this
data and obtained 49 Action Unit (AU), gaze and pose features.
The dataset was undersampled to 12 fps, to match the NeckData
timestamps.

•NeckFaceIR:We used video frames from NeckFace’s IR cameras
to test direct output classification. Cameras collected data at 12
fps and this data was resized to 224x224. Post-processing and
data augmentation were performed on each frame, according to
ImageNet [21] statistics for data normalization.

•RGBData:We used frames from the RGB camera reaction videos,
which were processed as in NeckFaceIR and downsampled to
match the 12 fps sampling and timestamps.

We also tested normalizing the dataset and running a Principal
Component (PC) Analysis for feature reduction. We kept only the
PCs which explained 95% of the variance on the dataset, resulting
in 15 (resp., 33) features for the NeckData (resp. OpenData) dataset.
The total number of individual datapoints per dataset can be seen in
Table 1. Because all participants watched the same stimulus videos,
data is balanced across participants.
Models tested: To develop an error detection model from human
reactions, we tested a diverse range of model architectures based on
prior work in the space of robot error detection [30, 36, 42]. These
included Recurrent Neural Networks (RNNs) such as Long Short-
TermMemory (LSTM) networks [19], which excel at capturing long-
term dependencies; Gated Recurrent Units (GRUs), known for their
efficiency in training; and Bidirectional LSTMs (BiLSTMs), which
process sequences in both directions. We also explored Transformer
models, leveraging their self-attention mechanism for capturing
global dependencies. Additionally, we implemented MiniRocket
[10, 41, 42], a non-neural approach known for its speed and accu-
racy in time series classification. The gated Multi-Layer Perceptron
(gMLP) [25] was tested as an alternative to attention-based mod-
els, using spatial gating units. Lastly, we included InceptionTime

Figure 4: NeckNet-18 architecture.

and InceptionTimePlus [17], an ensemble of deep Convolutional
Neural Network (CNN) models designed specifically for time series
classification. We also tested a similar Deep Neural Network to that
suggested by Stiber et al. [39]—3 hidden layers, with 64, 128 and
64 units (multi-layer DNN, ml-DNN). For the video datasets, we
used ResNet34 models [14], which are 34-layer CNNs pre-trained
on ImageNet [21], and tested different model structures. ResNet34
is the base-model for the original version of NeckNet [8].
Evaluation Metrics: The models were evaluated based on the
macro averages of the following metrics: accuracy, f1-score, preci-
sion and recall. We also considered margin-of-error metrics [9, 29,
36]—for a sample margin of size 𝑘 , and for a sample 𝑖 , the model
prediction is considered correct if𝑦𝑖

𝑝𝑟𝑒𝑑
∈ [𝑦𝑖−𝑘

𝑝𝑟𝑒𝑑
, 𝑦𝑖+𝑘

𝑝𝑟𝑒𝑑
]. Similar to

prior works, we consider these metrics to contemplate real-life er-
ror detection scenarios, where a small tolerance in timely detection
does not invalidate the system.
Model Training: We implemented model training through tsai
[28] and pytorch. For all model types and datasets, we performed
hyperparameter tuning on a 70-20-10 train-val-test split, with 5
cross-validation folds with no overlapping participants, for 500
epochs. For time-series models, we implemented an interval length
(i.e., number of samples in a training sample window) and stride (i.e.,
sliding length between sample windows) according to the methodol-
ogy in Wachowiak et al. [41]. Labels were selected according to the
mode (most frequent label) of each sample window. We picked the
top-performing models based on average test accuracy across the 5
folds, and selected the best-performing epoch based on the same
metric. For the Resnet34-based models (used on NeckFaceIR and
RGBData datasets), best performing models were selected based on
test accuracy on a single fold.
We additionally tested cross-training of the top-performing model
types. That is, we used the best performing models on the NeckData
and OpenData datasets, respectively, and fine-tuned the model’s
last layer to the alternative dataset, following the same process for
model selection as described above.
Finally, we tested single-participant generalization, based on mini-
mum data required for good model performance. For this, we used
𝑛 folds (𝑛 = number of participants), and trained the models on
each 𝑖 fold using a range between 5-45% of randomly selected data
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Figure 5: Best performing model for NeckData, GRU_FCN.

Table 1: Samples (frames) per dataset per type of reaction.

Dataset Neutral (0) Error (1) Total
NeckData 51745 37815 89560
OpenData 51580 37815 89395
NeckFaceIR 51745 37815 89560
RGBData 51578 37815 89393

for participant 𝑖 . 20% of the data was used for validation and the
remaining data was used for testing the model.
Final Dataset for Error Detection: The size of the datasets used
for training are presented in Table 1. NeckData is obtained from re-
constructing the Neckface IR camera data from the Stimulus round
using NeckNet-18. The RGB-based datasets (RGBData and Open-
Data) are obtained through undersampling and sample matching
to NeckData.

5 RESULTS
We present the main results from our paper. Our contributions are
1) developing a 3D facial reconstruction model, NeckNet-18 and 2)
benchmarking error detection models trained on NeckFace-derived
data against commonly used features (e.g. OpenFace).

5.1 3D Facial Mapping Model
Following the procedures described in Section 4.1, we ran 5-fold
cross validation (non-overlapping temporal data) to test NeckNet-
18 performance for 3D facial mapping. For Blendshape parameter
data (facial motion), performance was MAE𝑓 = 34.0± 6.9 (𝑀 ±𝑆𝐷),
and MAE𝑜 = 7.0 ± 1.3 for head rotation angles. For reference,
the original NeckNet performance [8] was MAE𝑓 = 25.6 ± 5.1,
MAE𝑜 = 3.1.

5.2 Error Detection Model
Table 2 presents the results from the best-performing models for
each training method and dataset type. The best performing model
on the NeckData dataset can be seen in Figure 5. Pre-trained Open-
Data (resp. NeckData) refers to the model pre-trained on NeckData
(resp. OpenData) and fine-tuned in OpenData (resp. NeckData). All
time-series models (NeckData and OpenData datasets) performed
best in the non-normalized dataset, except for pre-trained and single

participant OpenData (PCA dataset). A full list of hyperparameters
tested can be found in the study repository. In sum, our results for
error detection from human facial cues are:

• Time-series models (trained on OpenFace features or Blend-
shapes): the model trained on NeckData outperforms the
model trained using OpenFace features, by 5% accuracy and
10% F1.

• Pre-trained Models (trained on one dataset and fine-tuned on
the other): performance is lower than single-dataset train-
ing. Model fine-tuned on NeckData outperforms model fine-
tuned on OpenData, by 5% accuracy and 5% F1.

• Single-Participant Models (trained on subset of data from par-
ticipant and tested on remaining data from that participant):
for smaller training set (5% of data used from training, 95%
for testing), NeckData model outperforms model trained us-
ing OpenFace features, by 6% accuracy and F1. For larger
training set (45%), OpenData model slightly outperforms
NeckData model, by 1% accuracy and F1. NeckData model
achieves accuracy above 84% when trained on only 5% of
data for a single participant.

• Frame-Based Models (trained on images, RGB videos from
front-facing camera or videos from the IR cameras on the
NeckFace device): model trained on NeckFace camera data
outperforms RGB-trained ResNet34 by 1.5% accuracy but
has lower F1 (2%).

6 DISCUSSION
Motivated by human social competence, where we continuously
interpret external social cues from our peers to navigate social envi-
ronments, our study explored a novel approach tomore contextually-
aware robots through error detection by leveraging human facial
reactions captured through a neck-mounted device, NeckFace. Our
contributions are twofold: 1) we adapted NeckNet [8] to a new
dataset of human reactions, using a lighter model; 2) we developed
models using data from the NeckFace device and NeckNet to detect
errors from human reactions, finding good model performance both
across and within participant data and outperforming conventional
methodologies such as OpenFace.

6.1 3D Facial Mapping Model
The performance for NeckNet-18 was lower than that of the orig-
inal NeckFace work [8]. This difference may be attributed to the
following factors: 1) the original NeckFace work used more cali-
bration data (7-minute rounds) while our calibration session had
a duration of 5 minutes, of which only 4 minutes were initially
used for training, 2) the original NeckFace device sampled at 30
fps while our device sampled at 12 fps. This is due to our use of
a single Raspberry Pi device that records data from two cameras
instead of using two Pi’s. While implying a lower 3D mapping
performance, these two adjustments were made to minimize the
burden on participants regarding the duration of the session and
device size, while preserving valid performance. According to Chen
et al. [8], when MAE is under 40, the reconstructions should appear
visually similar to the ground truth.
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Table 2: Model hyperparameters and test set performance. Metrics are shown in𝑀 ± 𝑆𝐷 for 5 non-overlapping participant folds,
or for all participants for single-participant models (𝑛 = 25). using data collected through the RGB camera are shown in grey
rows. Percentage of participant data used for training is 5% for single-participant models.

Time-series Models
Model Dataset Accuracy Precision Recall F1
gMLP OpenData 0.606 ± 0.051 0.563 ± 0.025 0.632 ± 0.072 0.535 ± 0.015
GRU_FCN NeckData 0.658 ± 0.061 0.649 ± 0.060 0.667 ± 0.052 0.637 ± 0.070

Pre-trained Models
gMLP OpenData 0.569 ± 0.040 0.547 ± 0.028 0.572 ± 0.075 0.538 ± 0.019
gMLP NeckData 0.619 ± 0.057 0.597 ± 0.042 0.619 ± 0.057 0.589 ± 0.047

Single-Participant Models
InceptionTime OpenData 0.788 ± 0.049 0.782 ± 0.048 0.785 ± 0.050 0.782 ± 0.049
GRU_FCN NeckData 0.847 ± 0.048 0.840 ± 0.048 0.846 ± 0.050 0.842 ± 0.049

Frame-Based Models
ResNet34 RGB 0.515 ± 0.025 0.505 ± 0.020 0.505 ± 0.018 0.493 ± 0.023
ResNet34 NeckFace_IR 0.530 ± 0.031 0.504 ± 0.027 0.501 ± 0.016 0.474 ± 0.014

6.2 Error Detection Model
We further expanded on priorwork on robot error detection through
human social cues by extensively exploring the potential of NeckFace-
generated data in reaction classification. When comparing cross-
participant performance, a GRU model trained on NeckData outper-
forms a gMLP model trained on OpenData, i.e. facial action units
data extracted from video frames of the participants’ reactions
recorded on a participant-facing camera, achieving a test accuracy
of 65.8%. While low generalizability to unseen participants has been
discussed [4], highlighting the need for larger datasets of human
reactions to different error contexts, this performance is also higher
than reported on previous works [30, 36]. Notably, an experimental
factor which could impact this result is different levels of participant
engagement. For example, Parreira et al. [30] collected data online
through Prolific 2, wherein participants might be distracted or less
engaged than when watching videos in-lab. Nonetheless, these re-
sults validate NeckFace as a device that effectively captures human
reactions and NeckNet as a data reconstruction methodology in the
context of this user study.

Interestingly, the pre-trainedmodels (those trained on one dataset—
OpenData, NeckData—and fine-tuned on the other) did not outper-
form single-dataset models. Still, we find that a model trained on
OpenFace data and fine-tuned using NeckFace data outperforms
a model trained on OpenFace data only. This indicates that the
NeckFace approach may offer benefits even when utilizing transfer
learning techniques. For frame-based models, interestingly, perfor-
mance was comparable across the two datasets (video frames from
an RGB participant-facing camera and from NeckFace’s IR camera),
with both datasets generating models which perform slightly above
chance.

The most striking results come from the single-participant mod-
els. Using just 5% of the data for training, the GRU model trained
on NeckFace data achieved an accuracy of 84.7%, surpassing the In-
ceptionTime model trained on OpenData (78.8%). This gap narrows
when using 45% of the data for training, suggesting that NeckFace
is most useful in contexts of few calibration data, allowing for effec-
tive personalized error detection systems. Further, the GRU model

2https://www.prolific.com/

used only has around 300,000 trainable parameters, which yields
potential for lightweight computation and system portability.

The performance of NeckFace-based models, especially in single-
participant scenarios, highlights the potential of this approach for
creating more adaptable and personalized robot interaction systems.
By capturing facial cues from a unique angle, NeckFace appears
to provide rich, informative data that can be leveraged for error
detection, namely throughmapping reactions into a 3D plane rather
than OpenFace’s 2-dimensional processing. By tapping into previ-
ously underutilized data sources, we can enhance robots’ ability to
interpret human reactions and adjust their behavior accordingly.

6.3 General System Considerations
Detecting and responding to social errors is a critical component
of creating socially competent robots that can seamlessly integrate
into diverse human environments. Our use of human facial re-
actions as a signal for error detection builds directly from HRI
literature [4, 31, 39]. While the technical approach leverages ma-
chine learning, the core objectives and implications of our work
are deeply rooted in human-robot interaction applications. The
inclusion of human and robot error videos in the stimulus dataset
explores the potential of a generalized error detection systemwhich
would allow agents to contextualize failures in their environment.
Future work may explore higher error granularity, e.g. through
detecting robot error type [40]. To the best of our knowledge, no
prior work has explored human reactions for multi-class error de-
tection in the environment, which could improve robot’s social and
functional performance.

We acknowledge that the proposed system implies additional
steps and computation, including the calibration round and the 3D
reconstruction using NeckNet-18 before error detection. This work
aimed to push the boundaries of input data modalities used in HRI
systems by exploring the NeckFace device and its functionalities.
We verify that error detection accuracy in models trained on Neck-
Data is higher by 12-15% than when directly using frame-based
datasets. Similar results on frame-basedmodels for non-overlapping
participant testing had been reported [4, 30]. While these are non
exhaustive results and there is potential for RGB-based models to
detect error effectively, higher computational demands for feature
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extraction might be justified by better performing systems. This
tradeoff warrants discussion, especially in more critical application
scenarios.

6.4 Limitations and Future Work
It is important to highlight the scope and limitations of our work.
The controlled environment of our user study may not fully repre-
sent the complexities of real-world human-robot interactions. For
example, NeckFace is highly sensitive to lighting variations, which
can compromise the performance of NeckNet. Further data collec-
tion in different environmental conditions, as well as additional
research (e.g., in-person errors) is needed to validate the effective-
ness of this approach across diverse populations and in various
real-world scenarios, where noisy reactions are common.

The exclusion of participants from our dataset due to the inability
to effectively transform the NeckFace camera data onto the 3D
reconstruction brings about the tradeoff between larger datasets
versus better-curated datasets. A longer calibration round or higher
data frame rate could also provide more accurate NeckFace data
reconstruction.

Finally, we note the ethical and sustainability implications of our
work. While the envisioned use-case – more harmonious human-
robot interactions, where robots play a collaborative and comple-
mentary role to human activities and needs, should contribute to
increased human satisfaction, fulfillment, and efficiency, there is a
risk of misuse of this technology. Broader discussions ought to be
held to ensure frameworks where new tools are not misappropri-
ated and contribute to a more just and equitable society. Related to
this, access to technology is also an important indicator of develop-
ment and equity. The NeckFace device is relatively inexpensive and
easy to replicate, and while it requires high power consumption
in its current version, newer and more efficient materials should
mitigate these limitations.

7 CONCLUSION
This research underscores our claim that expanding human-in-the-
loop robot sensing can lead to more adaptable and personalized
robot interaction systems. Leveraging the social competence hu-
mans exhibit through interpreting social cues, NeckFace offers
a new perspective on capturing these previously untapped data
sources. The performance of NeckFace-derived models, especially
in single-participant scenarios where personalization is key, re-
inforces its potential for creating more context-aware robots. By
effectively capturing facial cues, NeckFace could enable robots to
better understand and respond to human reactions in real-time.
This capability is essential for the integration into dynamic human
environments, pushing robots beyond simple task execution toward
becoming socially aware collaborators guided by human behavior.
The NeckFace form factor and classification results give confidence
for further exploration into other HRI domains, where traditional
methods have previously been limited.
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